Midterm Exam # 1 – 70 Points

The exam is closed book and closed notes. You may use a calculator, but no phones.

You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature_____

Problem 1 (20 Points)

Suppose that the Spearot Drought Severity Index represented by a normal distribution with mean 0 and standard deviation 1. Higher values imply a more severe drought.

a. What is the probability of the Spearot Drought Index taking on a value of exactly 0.5? (5 Points)

b. Suppose that *severe drought* is classified as a Spearot index value above 1.5. What is the probability of a severe drought? (5 Points)

c. Using the previous information, suppose that after a severe drought, there is a 0.4 probability of a tax increase. Absent a severe drought, there is a 0.3 probability of a tax increase. Given that we *did not* observe a tax increase, what is the probability that we observed a severe drought? **(10 points)**

Problem 2 (30 Points)

Suppose that we are interested in examining the effects of family income on educational attainment using a sample of young adults. To do so, we run the following regression:

$$\log(educ) = \beta_0 + \beta_1 \log(faminc) + u$$

Here, *faminc* is annual income of the respondent's family, and *educ* is years of college attained by the respondent.

a. Suppose I estimate that $\hat{\beta}_1 = 0.5$. Please **derive** using derivatives the interpretation for $\hat{\beta}_1$. Please interpret this estimate. (10 Points)

b. In the previous example, we forgot to include *fameduc*, which is the average educational level of the respondent's parents. Suppose that *fameduc* is positively related to family income, and positively related to *educ*. What is the direction of the bias, if any, from forgetting about *fameduc*? If we estimate that $\hat{\beta}_1 > 0$, what can we say, if anything, about the sign of β_1 ? (10 Points)

c. In part (b), what assumption have we violated when we forget about *fameduc*? (5 Points)

d. What is the most important thing that you will learn in this class? (5 Points)

Problem 3 (20 Points)

Suppose that we are interested in examining the effects of iq on wage outcomes. To do so, we estimate the following equation:

$$wage = \beta_0 + \beta_1 iq + u$$

Here, *wage* is the monthly wage (in dollars) of the respondent, and *iq* is the points earned by the respondent on an IQ test. Estimating this equation yields the following:

$$wage = 2000 + 400iq$$

a. Please interpret the coefficient on *iq*. (5 points)

b. Please interpret the intercept of this regression. (5 points)

c. Suppose that we instead we instead estimate:

$$\log(wage) = 4 + 0.05iq$$

Please interpret the coefficient on *iq*. (10 points)

Normal Distribution _from _oo to Z

Z	I	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	i.	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	I.	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	I.	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	I.	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	I.	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	I.	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	I.	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7		0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8		0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	ł.	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0		0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	÷.	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	÷.	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	÷.	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	Ł	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	÷.	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.0	÷	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	÷	0.9004	0.9009	0.3373	0.9002	0.9091	0.0670	0.9000	0.9010	0.9020	0.9633
1.0	÷.	0.0011	0.3013	0.3030	0.0000	0.3071	0.3070	0.9000	0.3033	0.0761	0.9700
2.0	÷	0.9713	0.9719	0.3720	0.9732	0.9730	0.9/11	0.9750	0.9750	0.9701	0.9707
2.0	÷.	0.9772	0.9770	0.0920	0.0924	0.3/33	0.09/0	0.9005	0.9000	0.9012	0.9017
2.1	÷.	0.9021	0.9020	0.9050	0.9034	0.9050	0.9042	0.9040	0.9030	0.9035	n 9890
23	÷.	0 9893	0 9896	0 9898	0 9901	0 9904	0 9906	0.9001	0 9911	0 9913	0.9916
2 4	÷.	0 9918	0 9920	0 9922	0 9925	0 9927	0 9929	0 9931	0 9932	0 9934	0 9936
2.5	÷.	0 9938	0 9940	0 9941	0 9943	0 9945	0 9946	0 9948	0 9949	0 9951	0.9952
2.6	i.	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	i.	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	i.	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	I.	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
З.О	I	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990